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Trisomy silencing by XIST normalizes Down
syndrome cell pathogenesis demonstrated for
hematopoietic defects in vitro
Jen-Chieh Chiang1, Jun Jiang1, Peter E. Newburger2 & Jeanne B. Lawrence1

We previously demonstrated that an integrated XIST transgene can broadly repress one

chromosome 21 in Down syndrome (DS) pluripotent cells. Here we address whether

trisomy-silencing can normalize cell function and development sufficiently to correct cell

pathogenesis, tested in an in vitro model of human fetal hematopoiesis, for which DS cellular

phenotypes are best known. XIST induction in four transgenic clones reproducibly corrected

over-production of megakaryocytes and erythrocytes, key to DS myeloproliferative disorder

and leukemia. A contrasting increase in neural stem and iPS cells shows cell-type specificity,

supporting this approach successfully rebalances the hematopoietic developmental program.

Given this, we next used this system to extend knowledge of hematopoietic pathogenesis on

multiple points. Results demonstrate trisomy 21 expression promotes over-production of

CD43+ but not earlier CD34+/CD43−progenitors and indicates this is associated with

increased IGF signaling. This study demonstrates proof-of-principle for this epigenetic-based

strategy to investigate, and potentially mitigate, DS developmental pathologies.
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Down syndrome (DS), caused by trisomy 21, occurs in
about every 750 births in the United States and impacts
millions worldwide, with enormous medical and social

costs. Children with DS are typically sociable, valued members of
families, challenged with mild to moderate cognitive disability
that often progresses in adulthood, as well as higher risks of
several medical challenges; these include congenital heart disease,
high susceptibility to viruses and immune defects, metabolic
changes, early-onset Alzheimer disease, and hematopoietic
abnormalities, including leukemia. Biomedical research to
develop therapies for DS has lagged that of rare monogenic dis-
orders, such that specific DS cell pathologies are mostly unknown,
nor is it known how many of ~300 genes on chromosome 21 have
any phenotypic effect when present in three copies. Inbred mouse
models of DS have been valuable and a number of candidate
genes implicated1,2, but, with the exception of the known role of
APP in Alzheimer disease, chromosome 21 genes that underlie
major DS phenotypes have yet to be determined. In fact, alter-
native concepts of DS hold that much of the syndrome is not due
to specific chromosome 21 genes but to the physical presence of
an extra chromosome causing general stress or cell-cycle defects
that impact cell function and vitality3. Although aneuploidy is
common in cancer, studies in yeast and normal mouse cells show
that normally an additional copy of any chromosome causes a
proliferative disadvantage, likely due to the proteomic stress
caused by collective low-level over-expression of many genes,
rather than a few specific dosage-sensitive genes4,5.

We previously demonstrated that chromosome 21 over-
expression can be countered by epigenetic repression following
site-directed insertion of a single gene, XIST, into one chromo-
some 21, shown in DS induced pluripotent stem cells (iPSCs)6.
The X-linked XIST gene naturally controls X-chromosome
inactivation in human female cells, producing a long non-
coding RNA that coats the X chromosome in cis to induce a series
of chromatin modifications that stably silence transcription across
that X chromosome7,8. Insertion of XIST into a trisomic auto-
some allowed Jiang et al.6 to demonstrate that in absence of
selection against silencing (as occurs for a disomic autosome),
XIST had a remarkably comprehensive capacity to repress genes
across the autosome. This prior study focused on demonstrating
transcriptional repression throughout the autosome; this was
shown in undifferentiated iPSCs using several methods, including
allele-specific gene expression, CpG promoter methylation, het-
erochromatin hallmarks, and genome expression profiling, which
showed total chromosome 21 transcriptional output reduced to
near normal disomic levels6.

Here we address the critical next question: can trisomy silen-
cing (epigenetic repression of one extra chromosome) effectively
normalize or mitigate defects in cell function and pathogenesis,
which underlie DS phenotypes? A priori, it cannot be assumed
that XIST-mediated transcriptional repression would be suffi-
ciently robust to correct cell pathogenesis, even in cells that still
must carry the physical presence of the extra chromosome 21.
Hence, direct determination of this is important for any future
prospect of chromosome therapy, or for the utility of this
experimental approach (inducible trisomy silencing) to investi-
gate trisomy 21 effects on developmental pathogenesis, for any
cell type. We test this in an in vitro model of human fetal
hematopoiesis, for which DS cellular phenotypes are best char-
acterized9–12. Hematopoietic abnormalities are important clini-
cally, most acutely for 20–30% of infants that develop transient
myeloproliferative disorder (TMD), often a precursor to leuke-
mia. Trisomy 21 confers approximately 500-fold greater inci-
dence of acute megakaryocytic leukemia (AMKL) and a ~20-fold
greater risk for acute lymphoblastic leukemia (ALL). In addition,
less severe hematopoietic abnormalities are present in most

individuals with DS, including immune system defects and high
susceptibility to viral infections, and chronic inflammation that
may contribute to cognitive impairment and decline13–18.

Finally, because DS hematopoiesis involves overproduction of
certain cell types, comparing the effects of trisomy silencing in
hematopoietic cells with neural progenitor cells allows us to
address an important question: whether trisomy silencing may
enhance cell proliferation/fitness in a nonspecific manner due to
relief of aneuploidy stress, not necessarily by correcting specific
defects in a developmental program. A priori, silencing trisomy
21 in the hematopoietic system might actually increase the over-
proliferation of the trisomic hematopoietic cell types. Alter-
natively, trisomy silencing may normalize overproduction of
these blood cell types, indicating successful correction of a specific
defect by normalizing the hematopoietic developmental program.

Several aspects of DS hematopathogenesis have been shown
recapitulated in studies comparing human trisomic and disomic
iPSCs, providing a benchmark for us to address whether XIST-
induced trisomy silencing can largely normalize DS-related
hematopoietic phenotypes12,19,20. In addition, the inducible sys-
tem used here avoids variation inherent in comparing distinct cell
clones, allowing us to not only corroborate but extend knowledge
of the specific steps in hematopoiesis affected by trisomy 21.
Results show that trisomy 21 over-expression promotes excess
CD43+ progenitors, but not the earlier CD34+ hemogenic
endothelium (HE) population. Notably, we use this approach to
investigate the as yet unconfirmed hypothesis that overactive
insulin-like growth factor (IGF) signaling is present and impor-
tant in trisomy 21-associated myeloid disorders21,22. Results
further address whether trisomy 21 alone impacts IGF signaling,
prior to the GATA1s mutation, which is consistently present in
TMD and AMKL leukemic blasts23,24. Trisomy 21 itself causes
excessive production of erythroid and megakaryocytic cells,
which can be observed in fetal liver, or in iPSC-derived hema-
topoietic cells (without GATA1s mutation)9,10. Understanding
how trisomy 21 leads to cell pathology will be important for
development of traditional therapeutics for DS, and our results
provide substantial new insights into this.

In addition, gene therapies are being developed for monogenic
disorders due to the ongoing revolution in gene editing and
in vivo delivery technologies25. Such hopeful progress, however,
has not been relevant for chromosomal imbalances, involving
hundreds of genes across a chromosome. Here we demonstrate
that even without identification of pathogenic genes, insertion of
a single epigenetic switch to suppress chromosome-wide tran-
scription can effectively mitigate cell pathogenesis and normalize
phenotypic outcome.

Results
A system to examine trisomy 21 effects in identical cell
populations. Figure 1a summarizes the experimental design in
which a doxycycline-inducible full-length XIST cDNA was
inserted into one of three chromosome 21s in iPSCs (derived
from a male DS patient) as previously described6. This prior
study focused on showing that a full-length cDNA could be
targeted into chromosome 21 and the XIST RNA properly loca-
lized to induce transcriptional silencing across that chromosome
in cis, shown in undifferentiated iPSCs. Here we investigate
whether trisomy silencing can normalize hematopoietic cell
phenotypes using a previously characterized all-isogenic panel of
DS iPSC subclones, including four independent XIST-transgenic
clones, the non-transgenic parental trisomic line, and an isogenic
disomic subclone (from a cell, which spontaneously lost one
chromosome 21). The inducible system compares the effects of
reducing trisomy 21 over-expression in parallel cultures of
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otherwise identical cell populations, thus minimizing sources of
variation between even isogenic clones26–28.

Prior to considering effects in hematopoiesis, it is instructive to
consider that expression of transgenic XIST clearly enhances
proliferation of iPSCs and formation of neural progenitors
(Fig. 1b and previously reported6). These findings affirm that
XIST expression is not toxic, but instead can have beneficial
effects on cell proliferation and viability. The enhanced kinetics of
neural stem cell formation upon trisomy silencing may reflect
correction of a developmental defect, however a deficit in neural
stem cell formation is not an established phenotype of DS, and
was not apparent in comparison of non-isogenic trisomic and
disomic iPSCs (which showed general variability between lines)29.
Therefore, it remained possible that trisomy silencing would
enhance proliferation and production of any cell type, if this
relieves a general aneuploidy stress. Hence, it was of interest to
determine if XIST expression would accentuate, have no effect, or
actually decrease (normalize) the well-established overproduction
of hematopoietic cell types seen in DS children. If there are cell
type-specific effects consistent with clinical impact, this would
support that trisomy silencing corrects the developmental
program, not just general stress.

Trisomy 21 silencing normalizes production of CFU-Mk and
CFU-E. The elevated risk for TMD and AMKL in DS individuals
is characterized by markedly increased production of mega-
karyocytes and erythrocytes, as affirmed in DS fetal liver cells
in vitro9–11 and in studies using DS iPSCs that mirror fetal
hematopoiesis12,20, but not another that reflected primitive
hematopoiesis, an earlier stage30. This is consistent with other
evidence that hyper-proliferation arises during fetal hematopoi-
esis, explaining why risks of TMD and AMKL subside after a few
years of age. Hence, we adopted a protocol that was shown to
mimic fetal hematopoiesis from iPSCs differentiated through
embryoid bodies (EB), using a defined cytokine cocktail as
reported by Maclean et al.20 (Fig. 2a).

Our prior study demonstrated XIST-induced chromosome
silencing is largely complete within 3–5 days of induction6, but
we confirmed chromosome silencing in our hematopoietic
differentiation system by examining XIST RNA localization,

H3K27me3 (hallmark of heterochromatin), and silencing of the
APP transcriptional foci from the XIST-coated chromosome.
After 9 days of differentiation we disaggregated EB and sorted
cells using the CD34 marker broadly used to enrich for the
hematopoietic lineage31. More than 90% of XIST-positive CD34+

cells exhibited a well-localized XIST RNA accumulation and
H3K27me3 across the chromosome (co-localized with XIST
RNA) (Fig. 2b) and silencing of the APP transcription focus from
the targeted chromosome (Fig. 2c). These experiments utilized
parallel cultures (with and without dox-induced XIST) for four
independent transgenic subclones (termed clones 1, 3, 4, and 5,
which were previously characterized6), as well as the non-
transgenic trisomic parental line and a disomic subclone (also
plus/minus doxycycline). Comparison of the non-transgenic
trisomic parental and disomic subclone is included for reference;
although this is just one comparison of different subclones, our
findings are highly consistent with other studies showing that DS
trisomic iPSCs generate more megakaryocyte and erythrocyte
colonies (Fig. 3a, b)11,12,20.

Our first goal was to address whether induced XIST expression
can mimic results of normal euploid cells and rebalance
overproduction of hematopoietic cell types, examined first for
the differentiation end state by colony-forming assays. EB at day
14, which contain hematopoietic progenitor cells, were dis-
sociated and equal cell numbers plated for colony-forming assay
or fluorescence-activated cell sorting (FACS) analysis (Fig. 2a).
The morphology of colonies is shown in Supplementary Figure 1.

The first point to note is that doxycycline treatment of the non-
transgenic parental or disomic lines had no significant effect on
the production of the four types of hematopoietic cell colonies,
affirming that the effect of doxycycline on the transgenic clones is
due to XIST expression to induce chromosome silencing. Most
importantly, a marked, statistically significant reduction
(50–80%) in megakaryocyte (CFU-Mk) and erythrocyte (CFU-
E) colonies is consistently seen in parallel comparisons for all four
clones (±XIST) (Fig. 3a, b). These observations of reduced CFU-
MK and CFU-E after XIST expression are consistent with
overproduction in DS newborns of erythrocytes and megakar-
yocytes, and mirror results from comparisons of hematopoiesis
from trisomic DS versus normal iPSCs. Therefore, these results
provide the first critical demonstration that cellular phenotype
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Fig. 1 System to study the effect of trisomy 21 expression on DS-related pathologies. a Schematic of the inducible XIST RNA-mediated silencing system in
Down syndrome iPSCs, in which XIST induces formation of a condensed, heterochromatic chromosome 21 “Barr Body”. b Neural stem cell (rosette)
formation after 15 days neural differentiation, with and without induced expression to silence one chromosome 21. The samples treated with dox have
significantly more neural stem cells at this time point. Scale bar: 100 μm. c Quantification of the number of neural rosettes at day 15 for two of the isogenic
XIST-transgenic subclones. The iPS cells used were from a male, but because regulatory counting elements are removed from the XIST cDNA, this system
is also compatible with female cells. Error bars represent s.e.m. from three independent experiments
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can be normalized or greatly mitigated by XIST RNA-mediated
chromosome silencing.

While the expected effect of trisomy 21 on CFU-MK and CFU-
E is greatest and firmly established, it is much less clear whether
trisomy 21 affects production of granulocytes and mono-
cytes11,12,20,30. The direct comparison of identical cell popula-
tions (±XIST) may provide an opportunity to detect any more
subtle differences. Results suggest there is a modest but
reproducible decrease in the reductions of granulocyte colonies
(CFU-G) as a function of chromosome 21 silencing (Fig. 3c). The
low numbers of CFU-G (in all samples) makes this comparison
more difficult, but a statistically significant difference was present
for some single pairwise comparisons and a trend of reduced
CFU-G colonies evident for all pairwise comparisons of trisomic
versus disomic state. Thus, these results suggest trisomy 21
enhances granulocyte production, but to a much lesser degree
than megakaryocytes and erythrocytes. Data for monocyte
colonies (CFU-M) showed very small differences, repeatedly in
three replicate experiments of four clones, but overall results
indicate monocyte colony production is largely unaffected.

These results demonstrate that XIST-mediated silencing of one
chromosome 21 in DS patient-derived cells can normalize the
clearly aberrant overproduction specifically of CFU-Mk and
CFU-E in vitro. As further considered in Discussion, this alone is
a major milestone as it shows proof of feasibility that a single gene
insertion can correct pathogenesis of an established phenotype,
one which confers high susceptibility to TMD and leukemia.

Excess cells arise as CD43+ progenitors emerge from the
endothelial-to-hematopoietic transition. Given that XIST
expression successfully normalized the end product of hemato-
poiesis, we next examined which steps in hematopoiesis are most
impacted by trisomy silencing. Fetal hematopoiesis is a complex
process and can be modeled by in vitro differentiation of plur-
ipotent stem cells31–40. Several major stages in hematopoiesis are
outlined in Fig. 4a, along with markers used to isolate distinct
populations.

The HE is a small subset of endothelial cells, which can
produce hematopoietic stem cells (HSCs) during early embry-
ogenesis. HE is difficult to identify as it only exists transiently and
expresses both hematopoietic and endothelial markers (Fig. 4a)41.
The formation of HSCs from HE is known as the endothelial-to-
hematopoietic transition (EHT). HSCs are capable of self-renewal
and differentiation to all hematopoietic lineages. Increased
numbers of hematopoietic progenitor cells were demonstrated
in studies using DS fetal livers9,10and iPSC systems12,20,30.
Therefore, we next tested whether XIST-induced trisomy
silencing would reduce production of hematopoietic progenitor
cells.

Hematopoietic differentiation through EB was induced from
XIST-transgenic DS iPSCs, with and without XIST induction, and
different cell populations were examined at different times
(Fig. 4). CD34 is widely used to identify cell populations
containing hematopoietic stem and progenitor cells, whereas
CD43 is the earliest marker of full hematopoietic commitment
following EHT in vitro40. Hence, using both markers we identify
three populations (CD34+/CD43−, CD34+/CD43+, and CD34
−/CD43+). The two CD43+ populations are expanding while the
earlier CD34+CD43− population shrinks from day 11 to day 14.
As CD43 is the earliest marker, the two CD43+ populations most
closely represent committed hematopoietic progenitors.

As shown in Fig. 4b, induced chromosome silencing resulted in
significant reduction in the two CD43+ but not the CD34+CD43
− population. Therefore, trisomy silencing again normalizes the
cell phenotype, recapitulating the decrease in CD43+ cells
previously shown for normal relative to trisomic cells. Hence
overproduction of differentiated hematopoietic colonies (Fig. 3) is
preceded by overproduction of hematopoietic progenitors, but it
is not known whether excess progenitors initially arise at an
earlier step. Given that trisomy 21 status strongly impacted the
CD43+ progenitors but not the CD34+/CD43− cells, we used this
approach to ask if the developmentally earlier population of the
HE is also overproduced in trisomic cells. Alternatively, if the HE
population numbers are unaffected, this would indicate the excess
of CD43+ committed hematopoietic progenitors first emerge
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following the EHT process. KDR+CD31+ populations at day 8
differentiation include HE-like cells39, and consistent with earlier
observations, we found no significant difference in this popula-
tion (Fig. 4c)12,20. A recent study demonstrated that HE is further
enriched in the CD34+CD43−CD73−CD184− population31.
Analysis of this population demonstrates no significant difference
(Fig. 4d). Thus, using two different sets of markers no effect was
seen on the HE-like population. Collectively, results indicate
trisomy 21 enhances the EHT process or steps closely thereafter,
leading to overproduction of CD43+ progenitors. As considered
in the Discussion, this with other findings suggest a potentially
overactive EHT process.

CFU-Mk and CFU-E production from CD43+ cells also
increases. Studies of DS fetal liver cells showed more hemato-
poietic colonies generated from equal numbers of progenitor
cells9–11. This could reflect effects of trisomy on the in vivo
niche, or an impact on the cell autonomous differentiation
competence. We thus used our experimental system to

determine if trisomy 21 expression affects formation of various
colony types from equal numbers of CD43+ progenitors pur-
ified from day 14 EB. There was only a marginally significant
difference in CFU-G, and slight reduction in CFU-M, but
consistent with studies of fetal livers, results show marked
decreases in CFU-Mk and CFU-E formation in chromosome
21 silenced samples of transgenic subclones, (Fig. 5a). In
addition, the CFU-Mk colonies in treated samples were usually
smaller than in untreated samples, reflecting enhanced mega-
karyocyte proliferation in DS. Therefore, trisomy 21 expression
not only causes overproduction of CD43+ progenitors but also
increases their inherent capacity to produce more mega-
karyocytes and erythrocytes. Importantly, results show the
latter effect is due to cell intrinsic properties, likely through
excess production of megakaryocyte-erythroid progenitors
within the CD43+ hematopoietic progenitor population.

Overactive IGF signaling implicated in overproduction of
CD43+ cells. Finally, we explored the utility of this system to
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examine gene expression changes as a function of silencing the
third chromosome 21. The heterogeneous nature of hemato-
poietic cell populations (even as defined by specific markers) and
the rapidly changing levels of hematopoietic regulators during
hematopoiesis likely contribute to observations in multiple stu-
dies that consistent changes in gene expression due to trisomy 21,

even for known hematopoietic regulators encoded on chromo-
some 21, have alluded identification11,20. Since there is some
expression variability (or noise) inherent in different stem cell
clones, we tested whether inducible chromosome silencing might
be able to discern consistent changes, focusing on a small panel of
genes of interest, as previously examined by Maclean et al.20. This
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included several genes involved in IGF signaling, which were of
particular interest.

The mechanism whereby trisomy 21 itself (without GATA1s)
leads to overproduction of megakaryocytes and erythrocytes
remains an important question, but as recently discussed,
differences in the expression or responsiveness to the devel-
opmentally regulated IGF signaling pathway remain an attractive
candidate22. The IGF pathway is well-established to broadly
impact cell proliferation and is linked to a variety of other cancer
types42, and was implicated as key to fetal hematopoiesis and DS-
associated TMD and DS-AMKL21. Klusmann et al.21 showed that
fetal hematopoiesis specifically is reliant on IGF signaling. They
found IGF signaling genes substantially over-expressed in DS-
AMKL compared to non-DS-AMKL, and that DS cells were
especially sensitive to IGF signaling inhibition21. Given the
importance of IGF signaling in other cancers, it would be
significant if differences between trisomic and euploid hemato-
poietic cells could be corroborated, particularly in cells prior to
cancer genesis. Since Klusmann et al. examined leukemic cells
which had the GATA1s mutation, they could not address whether
trisomy 21 alone promotes overactive IGF signaling.

We performed RT-qPCR (reverse transcription quantitative
polymerase chain reaction) on RNA from purified day 14 CD43+

cells, examined in three independent experiments comparing
parallel cultures with and without dox-induced XIST. For many
genes, most of which are highly dynamic and cell type-specific
hematopoietic regulators, no significant patterns were evident
(Fig. 5a–c), similar to findings of Maclean et al.20. In contrast to
Maclean et al., however, we did detect consistent, statistically
significant differences in five of these same genes, all of which
have been discussed as potentially contributing to trisomy 21
hematopathology (Fig. 5b). For chromosome 21 genes DYRK1A
and GABPA, a reduction in mRNA levels close to the 1/3 level
expected (due to silencing one of the three chromosome 21s) was
evident (Fig. 5b). The sensitivity of our system to detect such
modest changes likely also reflects wide expression of these two
broad regulators in much of the heterogeneous CD43+

hematopoietic cell population; we note that GABPA and DYRK1A
are expressed early in undifferentiated iPSCs (Jiang et al.6 and
unpublished). Most importantly, results demonstrate that indeed
there is increased expression of IGF signaling genes (not on
chromosome 21) in the trisomic versus trisomy silenced state
(Fig. 5b). All three IGF signaling genes examined, IGF2, IGF1R,
and IGF2R, were markedly downregulated by about 60% in
trisomy silenced CD43+ cells.

Next we used the same inhibitor (PPP) as Klusman et al.21 to
examine effects on the three flow-sorted hematopoietic popula-
tions studied above (Fig. 6). Treatment began on day 8 and cells
were evaluated on day 14 of differentiation. The first experiment
using the same PPP concentration as Klusman et al. revealed that
production specifically of the CD43+ progenitors was almost
completely eliminated (Fig. 6a), whereas even this high concen-
tration had very little effect on the earlier CD34+/CD43− cells.
Importantly, this showed that the drug was not generally toxic to
cell proliferation, and affirms IGF signaling becomes important at
this specific point in hematopoiesis (during or after the EHT
process) (Fig. 6a).

Since IGF signaling was required for fetal hematopoiesis for
both normal and trisomic samples, any greater effect of IGF
signaling on trisomy 21 cell proliferation would only be evident
within a certain concentration window of IGF inhibitor, as
indicated by Klusman et al.21. Therefore, we first tested three
lower inhibitor concentrations on trisomic cultures, which again
affirmed greater effects on the CD43+ populations (Fig. 6b).
Finally, results indicated substantially reduced sensitivity to IGF

inhibition in the production of CD43+ cells when parallel
cultures are induced to silence one chromosome 21 (Fig. 6c).

Therefore, both gene expression analysis and the IGF inhibitor
studies support the conclusion that trisomy 21 itself, prior to
GATA1s mutation, increases IGF signaling, which in turn
promotes excessive production of CD43+ hematopoietic pro-
genitor cells in DS (Fig. 7). Results further demonstrate that
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expression of one gene, XIST, can sufficiently rebalance
chromosome 21 expression to reduce excess IGF signaling and
normalize pathological overproduction of hematopoietic cell
populations. Figure 7 provides a summary of findings and model
regarding the effect of trisomy 21 on distinct steps in the
hematopoietic process.

Discussion
Having demonstrated that an inserted XIST cDNA could repress
transcription across one chromosome 21 in trisomic iPSCs6, a
critical next question was whether trisomy silencing is sufficiently
effective to normalize cell physiology and mitigate pathogenesis
of known DS cellular phenotype(s)? Here we demonstrate that an
XIST transgene can correct the complex regulatory mechanisms
that underlie the established hematopoietic cell pathologies of DS.
Trisomy silencing achieved by XIST-induced expression from one
chromosome 21 sharply reduced the overproduction of mega-
karyocyte and erythrocyte colonies in multiple transgenic clones
consistently. Similarly, this also normalized an excess of CD43+

hematopoietic progenitors but did not impact earlier CD34
+/CD43− population. Importantly, induced XIST expression in
these same cell lines does not suppress proliferation of either
iPSCs or neural stem cells, showing cell type specificity and
supporting correction of the hematopoietic developmental pro-
gram. Further investigation is required to determine if trisomy 21
causes a developmental delay in regulatory programs of early
neurogenesis, however we note that the contrasting effects of
trisomy 21 silencing on hematopoietic and neural cells is con-
sistent with the different impact generally on the hematopoietic
and cognitive systems in DS. Overall, results strongly support that
XIST normalized the hematopoietic process by rebalancing
dosage-sensitive chromosome 21 genes. This is promising for the
prospect that developmental pathogenesis for other cell types
could be normalized by XIST-induced trisomy silencing.

For several results studied here, we refer to findings of prior
studies comparing trisomic versus normal cells11,12,20,30 to vali-
date that the consequences (benefits) of chromosome 21 silencing
on hematopoiesis approximates the effects of simply not having
the extra chromosome 21. But on multiple points, findings also
advance what is known and provide evidence for certain
important hypotheses. Our results affirm that trisomic CD43+

hematopoietic progenitors (and differentiated cells) are produced
in excess, however we also showed there was no effect on the
number of the earlier HE-enriched population, identified by two

sets of markers. This suggests the hyper-proliferative defect arises
at or near the step known as the EHT, which produces CD43+

progenitors from the HE population. An enhanced EHT process
also fits with the fact that the chromosome 21 RUNX1 gene
becomes expressed at this time and is required for production of
committed hematopoietic progenitors from HE12,43,44. While
other chromosome 21 genes may contribute, we postulate that
trisomy for RUNX1 likely drives an enhanced EHT process,
although CD43+ cells may also have proliferative or survival
advantage in the brief post-EHT interval prior to our assay.

One prior study had reported IGF signaling is overactive in
leukemic cells for DS versus euploid patients, and is critical for
fetal hematopoiesis21. Therefore, we examined and found
increased expression of IGF signaling-related non-chromosome
21 genes in trisomic hematopoietic cells. We also showed that
production of CD43+ progenitors (but not HE cells) is highly
sensitive to IGF signaling inhibition, and the effect is greater in
trisomic cells before chromosome silencing. This provides needed
corroboration for the role of IGF signaling in fetal hematopoiesis
and the important hypothesis of enhanced IGF signaling in DS
fetal hematopoiesis. Notably, IGF signaling becomes important at
the same step we found most impacted by trisomy 21, the for-
mation of CD43+ progenitors, a step at which RUNX1 is strongly
implicated12,43,44, suggesting a potential link between RUNX1
dosage and IGF signaling. In any case, our results demonstrate
that the IGF-related effects of trisomy 21 are evident in non-
leukemic hematopoietic progenitor cells (prior to GATA1s
mutation). Our results do not rule out that GATA1s mutations
also contribute as Klusmann et al.21 suggested, but these authors
also acknowledged that trisomy 21 itself might enhance IGF
signaling. We suggest that trisomy 21 and GATA1s could coop-
erate to push the same proliferation-promoting pathway to
dangerous levels, potentially explaining why neither trisomy 21
nor GATA1s alone leads to TMD or leukemia. Given these results
in the hematopoietic system, future studies should consider
whether effects on IGF signaling might contribute to other
aspects of the syndrome, such as the almost universal metabolic
changes that make many individuals with trisomy 21 more prone
to obesity or diabetes.

In addition to the broader significance of showing chromo-
some silencing can normalize pathogenesis of a DS cell pheno-
type, results here have direct relevance to common hematopoietic
abnormalities in DS. Many children with DS develop clinically
identified TMD; in most this will resolve naturally but TMD
alone can bring substantial morbidity22, and this condition pre-
identifies DS children at particularly high risk to acquire DS-
AMKL. Although children with DS-AMKL generally have higher
survival rates after chemotherapy than non-DS children, toxicity
is also often even greater for DS children and the disease is still
life-threatening22. Many groups are making progress on devel-
oping human HSCs from iPSCs for therapeutic purposes45.
Additionally, bone marrow transplantation of genetically mod-
ified HSC is actively pursued for clinical applications and cord
blood could serve as a more accessible source of HSCs for all DS
newborns. Since it has been shown in mice that Xist can initiate
chromosome silencing specifically in somatic hematopoietic
progenitor cells46, it can now be considered that dosage-
compensation of chromosome 21 expression in DS-TMD chil-
dren might eventually be developed as a therapeutic ex vivo or
in vivo strategy, or even conceivably in fetal liver in utero47,48 (the
origin of cells that give rise to TMD and leukemia). It is also
important to note that the blood system has relevance to other
bodily systems impacted by trisomy 21. For example, the lym-
phoid system is impacted, causing ~20-fold increased risk for
ALL49, a more common childhood leukemia for which success of
chemotherapy is substantially less than for DS-AMKL. While we

Fig. 6 Trisomy 21 contributes to increased sensitivity of CD43+

hematopoietic progenitor production to IGF inhibition. a Inhibition of IGF
signaling by 1 μM PPP, an IGF inhibitor, has distinct effects on the CD34+

and CD43+ populations. Production of CD43+ early hematopoietic
progenitor populations are more sensitive to IGF inhibition, whereas CD34
+CD43− hemogenic endothelium-enriched population is only slightly
affected. b Analysis of the effects of IGF inhibition at three lower
concentrations identifies the window of sensitivity for the CD43+ cells.
Drug/no drug ratios were calculated by the percentage of each population
in treated cultures divided by the percentage of each population in
untreated cultures. c Trisomy silencing reduces the sensitivity of CD43+

cell production to IGF signaling inhibition, suggesting greater reliance of
trisomic CD43+ progenitors on IGF signaling. Drug/no drug ratios were
calculated as in b and dox/no dox ratios were calculated by the drug/no
drug ratio of dox-treated samples divided by drug/no drug ratio of samples
without dox, to reflect the increased reliance on IGF signaling in trisomic
CD43+ hematopoietic progenitors. Error bars represent s.e.m. from three
independent experiments and P values were calculated by Student t test;
**P < 0.01, ***P < 0.001
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focus here on myeloid differentiation, the hematopoietic pro-
genitors studied here (and corrected by trisomy silencing) can
also give rise to cells of the lymphoid system, which could also be
studied. Any ability to normalize the transcriptome might also
mitigate immune defects, such as high viral susceptibility,
inflammation, and autoimmune defects16–18,50. Furthermore,
many recent studies suggest a link between immune system,
inflammation, and neurodegenerative diseases, such as the Alz-
heimer disease prevalent in DS.

Understanding the effects of trisomy 21 on different cell
types and pathways will be important for identification of
potential drug targets (e.g. IGF signaling). However, any pos-
sibility of chromosome therapy would bring the advantage that
silencing genes across one chromosome 21 would circumvent
difficulty of unraveling the complex biology arising from tri-
plication of close to 300 genes. The first step in development of
any gene therapy approach is to demonstrate that the genetic
abnormality can be corrected in vitro. Since XIST-mediated
chromosome silencing is not traditional correction of a genetic
mutation, it was essential to show that this could normalize a
DS cell phenotype and developmental program. Importantly,
we show that correction of a known DS cellular phenotype can
be achieved even without knowing which or how many specific
genes contribute to these abnormalities. It will be important to
test the efficacy of XIST and the potential of this approach for
other dysregulated systems in DS. While several challenges
remain, these positive findings have implications for the
potential future development of XIST transgenes for chromo-
some therapy, for various aspects of DS, and potentially other
chromosomal disorders. Given results shown here and the
ongoing revolution in gene-editing technology51, the transfor-
mative potential that insertion of a single gene could mitigate
some effects of trisomy 21 to improve the lives of people with
DS, and potentially other dosage imbalances, merits further
testing and development.

To summarize, this study demonstrates that transcriptional
repression of chromosome 21 induced by a single XIST transgene
is sufficiently effective in normalizing cell physiology that it
mitigates a major developmental pathology in DS. Hence, this
inducible chromosome silencing provides a valuable experimental
approach to determine the most direct effects of trisomy 21 on
cell function and development, important for traditional drug
therapeutics. In addition, results demonstrate success at an
important milestone, one that in our view was a pre-requisite for
any prospect that a targeted XIST transgene could potentially
become the basis of a therapeutic strategy. While other milestones
remain, these results encourage further exploration and devel-
opment of this transformative concept.

Methods
Inducible XIST-mediated chromosome silencing system. The inducible XIST-
mediated chromosome silencing system was built on DS iPSC parental line (DS1-
iPS4) provided by George Q. Daley6. Briefly, doxycycline-controlled XIST trans-
gene was inserted into DYRK1A locus on chromosome 21 and a transgene carrying
the doxycycline control element (rtTA) was inserted into AAVS1 locus on chro-
mosome 19 by electroporation. Isogenic disomic clone that spontaneously lost one
chromosome 21 after electroporation was isolated and served as a control for
expression of the dox control element in the disomic ± dox comparison in Fig. 3.

iPSC culture. iPSCs were maintained on irradiated mouse embryonic fibroblasts
(R&D Systems) in iPSC medium containing KnockOut-DMEM/F12 supplemented
with 20% KnockOut serum replacement (ThermoFisher), 1× GlutaMax (Ther-
moFisher), 100 μM non-essential amino acids (ThermoFisher), 100 μM β-
mercaptoethanol (Sigma), and 10 ng/ml fibroblast growth factor (FGF)-β (Ther-
moFisher). Cultures were passaged with 1 mg/ml collagenase type IV (Thermo-
Fisher) every week.

Neural differentiation. The differentiation and analysis of neural stem cells was
previously described6. Briefly, iPSCs were dissociated with Accutase (Innovative
Cell Technologies) and 4 × 105 cells were plated on Matrigel in mTeSR1 medium
(Stemcell technologies). Neural differentiation started when cell cultures reached
90–100% confluence by neural induction medium, a 1:1 mixture of N2- and B27-
containing media supplemented with 500 ng/ml Noggin (R&D Systems), 10 μM
SB431542 (Tocris Bioscience), and 1 μM retinoic acid (Sigma, cat#: R2625). The
numbers of neural rosettes were counted at day 15.

RNA fluorescence in situ hybridization and immunostaining. Immunostaining
for H3K27me3 (Millipore, 07–449) and RNA fluorescence in situ hybrization
(FISH) for XIST and APP were performed according to our previous published
protocol6,52. Briefly, cells cultured on coverslips were extracted with triton (Roche)
for 3 min and fixed in 4% paraformaldehyde in phosphate-buffered saline (PBS) for
10 min. Cells were then dehydrated in 100% cold ethanol for 10 min and air-dried
prior to hybridization. The XIST probe was a 14 kb XIST cDNA in pGEM-7Zf(+)
(Promega) and the APP probe is a BAC from BACPAC Resourses (RP11-910G8).
DNA probes were labeled by nick translation with either biotin-11-dUTP or
digoxigenin-16-dUTP (Roche). Fifty nanograms of labeled probes, with cot-1
competitor, was resuspended in 100% formaldehyde, followed by denaturation in
80 °C for 10 min. Hybridization was performed in 1:1 mixture of denatured probes
and 50% formamide hybridization buffer (as described52) supplemented with 2 U/
μl of RNasin Plus RNase inhibitor (Promega) for 3 h or overnight at 37 °C. Cells
were then washed three times for 20 min each, followed by detection with anti-dig
antibodies or fluorescein-avidin and DNA stained with DAPI. For immunostaining
with RNA FISH, cells were immunostained first and fixed in 4% paraformaldehyde
before RNA FISH. All antibodies were diluted at 1:500 ratio.

Hematopoietic differentiation. The base medium for hematopoietic differentia-
tion consisted of 50 μg/ml of Ascorbic Acid (Sigma A4544), 150 μg/ml of Trans-
ferrin (Roche), and 4 × 10−4 M of Monothioglycerol (Sigma M6145) in StemPro-34
medium (Invitrogen). iPSCs were passaged from feeders to growth factor reduced
matrigel (Corning #356230) for 24–48 h to remove feeder cells. At day 0, iPSCs
were lifted and broken into small pieces by collagenase B (Roche) then cultured in
base medium supplemented with 10 ng/ml of BMP4 in 5% oxygen environment.
Cells were cultured in suspension in low attachment plate (Corning) to facilitate
formation of EB. XIST expression was induced by doxycycline treatment (500 ng/
ml) at day 0. At day 1, EBs were cultured in base medium supplemented with 10
ng/ml of BMP4 and 3 ng/ml of FGF to induce hematopoietic differentiation. At day
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Hemogenic
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IGF signaling
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Fig. 7 Schematic of how trisomy 21 affects distinct steps in hematopoiesis. Trisomy 21 initially increases the production of hematopoietic progenitor cells as
they emerge from the endothelial-to-hematopoietic transition. A likely enhanced EHT process is accompanied by increased IGF signaling. Trisomy 21 also
increases the colony-forming potential of these hematopoietic progenitor cells
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4, EBs were transferred to base medium supplemented with 10 ng/ml of VEGF, 1
ng/ml of FGF, 40 ng/ml of IL-3, 10 ng/ml of IL-6, 5 ng/ml of IL-11, and 100 ng/ml
of SCF. Starting from day 8, FGF was replaced by 50 ng of TPO and 4U/ml of EPO
in the cytokine cocktail20. After 14 days of differentiation, EBs were dissociated and
single cells were plated in MegaCult medium for generating megakaryocytic
colonies and MethoCult medium for erythroid, monocyte, and granulocyte colo-
nies (Stem Cell Technologies). After 10 days, colonies were fixed and scored
according to the manufacturer’s instructions. All cytokines were purchased from
Pepro Tech except Erythropoietin (R&D Systems).

Flow cytometry. Cells from dissociated EB were filtered through 50 μm filter
(Partec) before stained for FACS analysis. All antibodies were purchased from BD
Bioscience, including anti-CD34-APC (#555824), anti-CD43−FITC (#555475),
anti-CD31-PE (#555446), anti-CD31-FITC (#555445), anti-CD73-PE (#550257),
anti-CD184- PE-Cy7 (#560669), and anti-CD309- Alexa Flour 647 (#560495). Cells
were stained for 30 minutes at 4 degree in the dark then washed twice with PBS
supplemented with 2% FBS before flow cytometry. DAPI was used for selection of
live cells. All antibodies for flow cytometry were diluted at 1:5 ratio.

RT-qPCR. RNA was isolated from purified CD43+ hematopoietic progenitor cells
using RNeasy kit (Qiagen). cDNA was generated by iScript cDNA kit (BioRad). IQ
SYBR Green supermix (BioRad) was used for quantitative PCR (qPCR) reactions.
All reactions were done in triplicate and the expression levels were normalized by
expression of GAPDH.

IGF signaling inhibition by PPP. Hematopoietic differentiation cultures were
treated with various concentrations of PPP, an IGF1R inhibitor (Millipore), to
inhibit IGF signaling as described in Klusmann et al.21. Briefly, differentiating EB
were treated with PPP starting from day 8, the time HE forms, to day 14, the time
we assayed the amount of different hematopoietic populations. The effect of PPP
on each population was calculated by the percentage of that population in treated
cultures divided by the percentage of that population in untreated cultures.

Statistical analysis. All experiments were done at least in triplicate and repeated
independently. For cell counting, at least three random regions on the slides were
scored for 100 cells for each experiment. For colony-forming assays, three inde-
pendent plates (for MethoCult) and three independent slides (for MegaCult) were
scored for the number of colonies of each type. For flow cytometry analysis, five
independent experiments were performed. For qPCR, reactions were performed in
triplicate in three independent experiments. One-tailed Student t test was used to
determine the significant level of differences between treated and untreated sam-
ples. Differences were considered to be significant when P < 0.05. Error bars
represent standard error of the mean.

Data availability
The datasets generated during and/or analyzed during the current study are
available from the corresponding author on reasonable request.
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